
Application of Enthalpy-Based Feedback Control Methodology to the
Two-Sided Stefan Problem*

Bryan Petrus, Joseph Bentsman, and Brian G. Thomas1

Abstract— In [1], the authors introduced a novel control law
for the single-phase Stefan problem, a nonlinear partial differ-
ential equation, with the eventual goal of applying the result to
control of cooling in continuous steel casting. In this paper, the
previously published method of controlling the Stefan problem
is extended in two key ways that improve the fidelity of the
nonlinear PDE as a model of the temperature and solidification
of continuous steel casters. First, a non-symmetric temperature
distribution is allowed, in which separate Neumann boundary
control is applied at either surface. Two convergent control laws
are compared in simulation, with one converging significantly
faster. Second, saturation of the Neumann boundary control
input is considered. Saturation is a significant concern in the
actual process. The enthalpy-based algorithm still allows for
convergence under saturation. However, as one would expect,
severity of the constraints can affect the convergence rate.

I. INTRODUCTION

According to industry statistics [2], 94.7% of steel pro-
duced in the world is made using the continuous casting
process. This process is characterized by a continuous steel
flow through the caster, called strand, that solidifies as it
moves, allowing for high throughputs, but requiring stringent
process control to maintain quality and safety.

The steel industry and researchers have long realized that
temperature regulation is important to steel quality. The
initial part of the caster - the mold - must contain the
liquid steel long enough for a solid shell to grow around
its boundaries. The mold must be vertical at the top to
contain the liquid steel when it is poured into the caster.
Therefore, the strand must be bent to horizontal so that it
can be transported out of the caster for further processing.
This causes transverse stresses on the surface of the steel that
can lead to cracks. As the ductility of steel changes with
temperature, preventing transverse surface cracks requires
regulating the surface temperature of the steel [3].

At the same time, the liquid steel exerts hydrostatic
pressure on the outer steel shell strong enough to bulge
the shell outward. Inside the caster, bulging is prevented by
containment rolls. If the steel has not fully solidified when it
passes the last of these rolls, severe bulging occurs, known
as a “whale” due to its shape, and liquid steel may even
escape the shell. At best, production must be halted, while
the whale is cut out by torches and removed by crane. In
worse cases, the caster may be damaged or workers may
even be injured by spouting liquid steel. To prevent this, the
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internal temperature of the steel must be below the melting
temperature before the steel leaves containment.

Hence, proper control of this process requires that the
temperature of the steel has a certain profile throughout the
caster. That is, regulation of the distributed temperature pro-
file of the steel strand is required. Standard heat conduction
is modeled by a parabolic partial differential equation (PDE)
that has been well-studied by control researchers [4], but with
solidification this well-behaved PDE becomes nonlinear. One
simple model of solidification is called the Stefan Problem,
which breaks the spatial domain into time-varying subdo-
mains representing liquid and solid material. The boundary
between the domains moves over time according to an energy
balance [5]. This model is naturally more difficult to analyze,
and thus the literature on control of this process has roughly
divided into two approaches: application-oriented approaches
which use simplistic control algorithms that behave well but
have no guarantee of performance, and control theoretical
approaches that seek out guaranteed behavior but tend to
rely on simplified control objectives or unrealistic actuation.

The current industry standard control method is actually
open-loop control that changes the water spray rates in
response to changes in casting speed, but not to grade, mold
heat removal, initial temperature, or any other changing con-
ditions. This open-loop control can be determined by expe-
rience, or through the use of offline optimization techniques
such as [6], [7]. The most advanced controllers currently
used in production consist of detailed computational models
to predict the temperature of the steel, in order to overcome
problems with sensor unreliability, and apply simple control
laws. In [8], the authors invented a static nonlinear feedback
rule based on repeated simulation trials. In [9], the authors
applied multi-input multi-output PI control. Both focused
on controlling the surface temperature to prevent transverse
cracks, but neglect the whale problem. In [10], the authors
applied PI control to the location of final solidification, which
would prevent whales but not cracks. All three approaches
focus primarily on the modelling difficulties, using a more
detailed nonlinear PDE than the Stefan Problem, but apply
off-the-shelf control laws and do not analyze their perfor-
mance.

The other branch of research into this problem is in the
control literature, rather than modelling. The approach used
in [11] and [12] is to solve the inverse Stefan Problem, i.e.
impose a desired trajectory of the boundary and determine
computationally a temperature profile. This would clearly
satisfy whale constraints, but could still result in temperature-
related cracks. In [13], the authors determine necessary con-
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ditions for receding horizon control for a nonlinear parabolic
PDE that can describe solidification, but no results on either
existence or stability of the optimal control are given. More
concrete results on the subject have focused on the nonlinear
Stefan Problem. In [14] and [15], the authors control the
position of the solidification front, neglecting surface cracks,
using thermostat-style boundary control inpus. In [1], the
authors found a control law that ensured convergence of
both temperature and solidification front position to a de-
sired reference profile for a simplified Stefan problem that
neglected some of the key challenges of the actual continuous
casting process. In this paper, we extend the work of [1] by
addressing some of these challenges.

In Section II we introduce the problem. We also restate
the main convergence result from [1] and briefly sketch the
proof. In Section III we extend the method to the two-
sided Stefan problem. Finally, in Section IV, we investigate
convergence when the Neumann boundary input is subject
to saturation.

II. BACKGROUND

For a continuous caster, as described in [16], scaling
analysis demonstrates that heat transfer by conduction in
the casting (axial) direction is negligible compared to heat
transfer by advection as material moves through the caster.
Therefore, the temperature can be modeled by a transverse
two-dimensional (2D) slice moving at the casting speed. In
slab casters, the thickness is typically an order of magnitude
smaller than the width, and so a one-dimensional (1D) slice
will be accurate for most of the slab.

A. Control-oriented process model

In the Stefan Problem [5], which is a good model of
solidification in ultra-low carbon steels, the slice is broken
into two subdomains consisting of the liquid and solid phases
of the strand. The position of the boundary between the two
phases is denoted as s(t). Then the following PDE models
the evolution of temperature within the slice:

Tt(x, t) = aTxx(x, t) , x ∈ (0, `)− {s (t)} , (1)

T (s (t) , t) = Tf , Tx(0, t) = u(t) , Tx(`, t) = 0, (2)

T (x, 0) = T0(x) (3)

ṡ(t) = b
(
Tx
(
s−(t) , t

)
− Tx

(
s+(t) , t

))
, s(0) = s0 (4)

In physical terms, Tf is the melting temperature, a is the
thermal diffusivity, and b = k/ρLf , where k is the thermal
conductivity, ρ is the density, and Lf is the latent heat of
fusion. All of these physical quantities are strictly positive.
The control input u is applied as the left-hand side Neumann
boundary condition. In the continuous caster, this is directly
proportional to the heat flux removed from the steel at the
surface.

The control objective for this process is to match a ref-
erence temperature T̄ (x, t) and solidification front position
s̄(t) , that are the solutions to (1)-(4) under known reference
control input ū(t) with initial conditions T̄ (x, 0) = T̄0 and

Symbol Description Value

a thermal diffusivity
2.27×10−5

W/m · K

b Stefan condition constant
4.13×10−8

m2/K · s
Tf melting temperature 1811 K
` half-thickness of strand 0.2 m
ū constant reference input 3000 K/m

TABLE I
THERMODYNAMIC PROPERTIES USED IN SIMULATIONS

Fig. 1. Initial condition for simulations in Sections II and IV

s̄(0) = s̄0. This reference profile can be designed, using for
example offline optimization methods such as [6], [7], to give
good quality steel under nominal conditions. Due to differ-
ence in pour temperatures and mold heat removal, however,
the initial condition is actually not necessarily the same as
the reference, and we seek a controller that converges the
actual system state to the reference profile. We will denote
the reference errors as T̃ (x, t) = T (x, t) − T̄ (x, t) , and
s̃(t) = s(t)− s̄(t) . Also, we will denote ũ(t) = u(t)− ū(t) .

In the presence of initial condition mismatch, if no control
adjustment is made, the reference temperature error will
reach a constant, non-zero steady state. This is illustrated
in Figures 1 and 2. Note that there is an initial positive
temperature error that quickly becomes negative due to the
opposing error in solidification front position. This is a sign
that enthalpy, meaning latent heat from the solidification
front position error and sensible heat from the temperature,
must both be considered. The physical parameters used in
these simulations are given in Table I.

Fig. 2. Temperature error T̃ (x, t) with initial condition mismatch and no
control adjustment
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B. Enthalpy-based control algorithm

We make the following assumptions on both the reference
and actual system:

1) [(A1)]
2) The initial conditions satisfy: 0 < s0 < `; T0 is piece-

wise smooth, continuous, and nondecreasing; T0 (x) <
Tf for all 0 < x < s0 and T0 (x) = Tf for all x ≥ s0.

3) The Neumann boundary input is bounded above and
strictly positive: supu (t) <∞. and 0 < inf u (t)

Assumption (A2) requires that the temperature in the
liquid phase be constant. While not strictly true, in actual
casting conditions the temperature in the liquid is negligible.
A typical superheat (the difference between the initial tem-
perature in the liquid and the melting temperature) is only
around 25◦C. In comparison, the average surface temperature
of the steel in the caster is around 500◦C less than the melting
temperature. Moreover, due to fluid flow in the liquid, the
temperature in the liquid reaches steady state much more
quickly than conduction alone would achieve. A consequence
of (A2) is that, in light of (4), ṡ is non-negative.

Assumption (A3) is generally physically true. Since the
strand is at a high temperature relative to the environment,
there is always some heat lost due to radiation or convection
even with no applied water sprays. The control algorithm
found in [1] satisfies this assumption if the controller gain
is small enough, and the effect of saturation is discussed in
Section IV.

The main result of [1] is:
Theorem 2.1: Define the function:

h (T ) :=


1
aT, if T < Tf

1
aT + 1

b , if T ≥ Tf

 , (5)

and denote

H̃ :=

∫ `

0

h̃dx =
1

a

∫ `

0

T̃ dx− 1

b
s̃. (6)

Let the reference and actual system both satisfy assumptions
(A2) and (A3), and the Neumann boundary condition satis-
fies

u (t) = ū (t) + kH̃ (t) , (7)

where gain k > 0. Then the reference temperature error T̃
converges asymptotically to 0 uniformly over the domain,
and the interface position error s̃ converges to 0 asymptoti-
cally as well.

Proof: The following is a sketch of the proof. A detailed
proof is given in [1].

First, note that taking the time derivative of H̃ using (1),
(2), and (4), gives

d

dt
H̃ =

∫ `

0

T̃xx −
1

b
ṡ+

1

b
˙̄s

= T̃x

∣∣∣s−1
0

+ T̃x

∣∣∣s−2
s+1

+ T̃x

∣∣∣`
s+2

+ T̃x

∣∣∣s+
s−

+ T̃x

∣∣∣s̄+
s̄−

= −T̃x (0) + T̃x (`) = −ũ.

(8)

This calculation took advantage of the fact that the PDE
(1) is linear and parabolic away from the moving bound-
ary. Therefore, its solutions are piecewise continuous. As a
consequence of (8), under control law (7), the quantities ũ
and h̃ are exponentially decaying. This means that k can be
chosen sufficiently small enough so that assumption (A3) is
satisfied.

In light of the bounded Neumann input and maximum
principles for parabolic PDEs (see, e.g. [17]), T̃x is bounded
uniformly, which then implies several further bounds. Using
Poincare’s inequality inequality given in [4] (Lemma 2.1, p.
17), we can find an upper bound on ‖T‖2. Since both T and
Tx are bounded in the L2 (0, `) norm, T is bounded in the
Sobolev norm H1 (0, `). Subsequently, Agmon’s Inequality
(Lemma 2.4, p. 20, ibid) ensures that |T | is also uniformly
bounded.

The main part of the proof uses an infinite-dimensional
invariance principle from [18]. Consider the Lyapunov func-
tional candidate

V
(
T̃
)

:=
1

2

∫ `

0

T̃ 2 dx− a

b
Tf (s+ s̄) + 2

a

b
Tf ` (9)

on the state space of the error system,
(
T̃ , s̃

)
∈ H1 (0, `)×

R. This function is clearly continuous on that space, and non-
negative on trajectories of the system. The time derivative
can be taken using (1)-(4) and integrating by parts. There
are two moving boundaries in the error, from the reference
and the actual systems. However, as mentioned above, the
error will be linear and smooth away from those boundaries.
Thus, we can eventually show

d

dt
V
(
T̃
)

= −aT̃ (0) ũ− a
∫ `

0

T̃ 2
x dx

− a

b

(
T̄ (s) ṡ+ T (s̄) ˙̄s

)
≤ −a

∫ `

0

T̃ 2
x dx.

(10)

where the inequality follows from the facts, discussed above,
that ũ converges to 0 exponentially, T̃ is uniformly bounded,
and ṡ and ˙̄s are both non-negative. More detail can be found
in [1].

Once again applying Poincare’s inequality:

−a
∫ `

0

T̃ 2
xdx ≤ −

a

4`2

∫ `

0

T̃ 2 dx+ 2T̃ 2 (`)

= − a

4`2

∫ `

0

T̃ 2 dx,

(11)

since T̃ (`) = T (`) − T̄ (`) = Tf − Tf = 0. Using the
fact that the state space of T , the Sobolev space H1, can
be compactly embedded in C0 ([19], Theorem 5.5), and the
invariance principle, T̃ converges to 0 uniformly. Since H̃
also converges to 0 and is defined as (6), so too must s̃.

III. EXTENSION TO TWO-SIDED STEFAN
PROBLEM

As mentioned in Section I, the strand is bent from vertical
to horizontal while in the caster. This means that spray water

1017



will tend to pool on the top of the strand, but not the bottom,
leading to significantly different heat transfer, and therefore a
symmetric temperature distribution is not possible. Moreover,
the inner and outer sides of the strand will undergo tensile
stresses at different points within the caster (times, in the
1D moving slice model), so symmetric tensile distributions
are not even necessarily desirable. Hence, we would like to
drop the assumption of symmetry. The model (1)-(4) can
be extended easily by including both sides of the caster,
giving two moving solid-liquid boundaries and two Neumann
boundary conditions.

Tt(x, t) = aTxx(x, t) , x ∈ (0, `)− {s1 (t) , s2 (t)} , (12)

T (s1(t) , t) = Tf = T (s2(t) , t) ,

Tx(0, t) = u1(t) , Tx(2`, t) = u2(t) ,
(13)

T (x, 0) = T0(x) (14)

ṡ1(t) = b
(
Tx
(
s−1 , t

)
− Tx

(
s+

1 , t
))
, s1(0) = s1,0

ṡ2(t) = b
(
Tx
(
s−2 , t

)
− Tx

(
s+

2 , t
))
, s2(0) = s2,0.

(15)

Here, the material is liquid between s1 and s2, and solid
otherwise. Assumption (A2) can be adjusted to reflect this.

1) [(A1)]
3) The initial conditions satisfy: 0 < s1,0 < s2,0 < 2`; T0

is piecewise smooth, continuous, and non-decreasing;
T0 (x) < Tf for all x ∈ (0, s1,0) ∪ (s2,0, 2`) and
T0 (x) = Tf for all x ∈ (s1,0, s2,0).

The reference profiles and errors can be defined equiva-
lently.

A. Convergence Proof

For the two-sided Stefan problem, we can extend Theorem
2.1 to the following:

Theorem 3.1: Denote

H̃2 :=

∫ 2`

0

h̃dx =
1

a

∫ `

0

T̃ dx+
1

b
(s̃1 − s̃2) . (16)

Let the reference and actual system both satisfy assumptions
(A3) and (A3), and the Neumann boundary conditions satisfy

ũ1 (t) + ũ2 (t) = kH̃ (t) , (17)

where gain k > 0. Then the reference temperature error T̃
converges asymptotically to 0 uniformly over the domain,
and both interface position errors converge to 0 asymptoti-
cally as well.

Proof: The proof follows the same basic principle as
the proof of Theorem 2.1. As in that case, the Neumann
boundary control can be shown to directly affect the total
enthalpy error.

d

dt
H̃ = −ũ1 − ũ2. (18)

So, the control law (17) drives the enthalpy error to 0.

We can show temperature convergence using the Lyapunov
functional

V
(
T̃
)

:=
1

2

∫ `

0

T̃ 2 dx

− a

b
Tf (s1 + s̄1)− a

b
Tf (s2 + s̄2)

+ 8
a

b
Tf `

(19)

Taking the time derivative, using the PDE (12)-(15), and
dividing by parts, we get

d

dt
V
(
T̃
)

= −aT̃ (0) ũ1 + aT̃ (2`) ũ2

− a
∫ 2`

0

T̃ 2
x dx

− a

b

(
T̄ (s1) ṡ1 + T (s̄1) ˙̄s1

)
− a

b

(
T̄ (s2) ṡ2 + T (s̄2) ˙̄s2

)
(20)

To complete the proof, we need the bounds on T̃ and T̃x
that came from Poincare’s and Agmon’s inequalities. These
relied on knowing that T̃ (`) = 0 due to symmetry, which is
not necessarily true any more.

There are two possible cases. First, the liquid phases of
the reference and actual system overlap at some point, i.e.
T (xeq) = T̄ (xeq) = Tf , for some 0 < xeq < 2`. Second,
there is no overlap. This necessarily means that s2 < s̄1,
or s1 > s̄2. If the former is true, Assumption (A3) means
that T (s2) = Tf and T (s̄1) < Tf , while T̄ (s2) < Tf
and T̄ (s̄1) = Tf , and the two temperature profiles are
continuous. Therefore, they must intersect at some point
s2 < xeq < s̄1. Similar reasoning holds if s1 > s̄2. Thus,
we must have a point where the temperatures are equal,
and T̃ (xeq) = 0, which allows us to apply Poincare’s and
Agmon’s inequalities.

The remainder of the proof follows the same as for
Theorem 2.1.

Unfortunately, as illustrated below, convergence under
this proof is not necessarily guaranteed until after final
solidification occurs.

B. Simulation Results and Discussion

In this section we will compare two algorithms for control
of the two-sided Stefan problem:

ũ1 = ũ2 =
k

2

(
1

a

∫ `

0

T̃ dx+
1

b
(s̃1 − s̃2)

)
, (21)

and

ũ1 = k

(
1

a

∫ `

0

T̃ dx+
1

b
s̃1

)

ũ2 = k

(
1

a

∫ 2`

`

T̃ dx− 1

b
s̃2

)
.

(22)

Note that both (21) and (22) meet the criteria (17) for
Theorem 3.1. However, suppose the initial condition has an
error as shown in Figure 3. Since the error in enthalpy is
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.

Fig. 3. Initial condition for simulations in Section III-B

(a) Using Neumann boundary con-
trol (21)

(b) Using Neumann boundary con-
trol (22).

Fig. 4. Temperature error T̃ for two-sided Stefan Problem (12)-(15), with
initial conditions from Figure 3 and different boundary control

symmetric, the control law (21) will not make any adjust-
ment. The errors will eventually converge, but not until after
final solidification, as shown in Figure 4a. For the intended
application of continuous casting, convergence this slow will
fail to meet the quality and safety goals.

Compare this with control law (22), which is simulated
in Figure 4b. The second control law converges before final
solidification. While these initial conditions are unrealistic,
they illustrate the importance of considering the convergence
rate when using this control method.

IV. CONVERGENCE UNDER INPUT SATURATION

An additional concern in actual casting applications is
actuator saturation. The steel is cooled by water sprays, and
there are a strict upper and lower bounds on the spray rates.
The upper bound comes from the limits of the piping system,
and the lower bound from the minimum water flow rate
necessary to produce a steady spray fan. In [1], it is suggested
that this may be dealt with by decreasing the controller
gain k. However, due to clogging, loss of pressure, or other
problems, the saturation bounds may even not be known.
We would like to know whether the control law works if
saturation is applied. So, we will use the notation

usat :=


uL, if u ≤ uL
u, if uL ≤ u ≤ uU
uU u ≥ uU

(23)

For simplicity, we will prove the following results on the
single-sided Stefan problem, but it is straight-forward to
extend them to the two-sided problem.

A. Convergence Proof

It turns out that the enthalpy-based control algorithm will
still converge, as long as some control adjustment is possible

around the reference profile. Specifically:
Theorem 4.1: Let u and usat be defined as in (7) and (23)

respectively. Suppose there exists ε > 0 such that

uL < ū± ε < uU (24)

for all time, and T and s satisfy system (1)-(4) with boundary
condition Tx (0, t) = usat, then T converges uniformly to T̄
and s converges to s̄.

Proof: In order to simplify notation, we will continue
to let ũ denote the error between the desired control effort
and the reference control, and denote ũsat := usat − ū for
the difference under actuator saturation. Using this notation,
the derivative of H̃ , calculated in (8), becomes

d

dt
H̃ = −ũsat (25)

If
−ε < ũ (t) = kH̃ (t) < ε, (26)

at any time t, then (24) ensures uL ≤ u ≤ uU and saturation
does not occur, i.e. ũ = ũsat. In this case, (25) is the same
as the calculation (8) in the proof to Theorem 2.1, so the
conditions for the proof still hold. Under those conditions,
(7), ũ is exponentially decreasing, and so (26) will continue
to hold, the boundary control input will never saturate, and
convergence occurs as normal.

If saturation does occur, then either ũsat = uL − ū or
ũsat = uU − ū. In either case, (24) ensures that ũsat ≥ ε
and furthermore

sign(ũsat) = sign(ũ) = sign
(
kH̃
)

= sign
(
H̃
)

and also that |ũsat| ≥ ε Therefore, using (25),

d

dt

∣∣∣H̃∣∣∣ =
d
dtH̃

sign
(
H̃
) =

−ũsat
sign(ũsat)

= − |ũsat| ≤ −ε.

Therefore, the magnitude of H̃ is strictly decreasing, and
eventually (26) will be true.

B. Simulation Results and Discussion

The condition (24) simply requires that there be some
actual control adjustment available. As long as there is
any consistent room, however small, between the reference
control and the saturation bounds, the error will converge
to 0. Under this assumption, the enthalpy error will still
move towards 0 until it is close enough that control law (7)
does not saturate. Figures 5a–5c illustrate this convergence.
The parameters used are given in Table I, and the initial
conditions are in Figure 1. The saturation bounds are uL =
2500 W/m · K and uU = 3500 W/m · K. As proven, despite
saturation, the reference errors still converge to 0.

An important extension of this result is to the case where
the saturation bounds are time-varying.

usat :=


uL(t) , if u ≤ uL(t)
u, if uL(t) ≤ u ≤ uU (t)

uU (t) u ≥ uU (t)
(27)
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(a) Temperature error T̃ with actuator saturation

(b) Neumann boundary control with actuator
saturation.

(c) Solidification front position s(t), comparing
result with no control and (7) under saturation.

Fig. 5. Illustration of Theorem 4.1 by numerical simulation of Stefan
Problem (1)-(4), with initial conditions from Figure 1 and Neumann
boundary control (7) under saturation.

This should be considered because of the containment rolls
mentioned in Section I. While the slice is under the contain-
ment rolls, the sprays cannot reach the surface. The sprays
have an indirect effect by drawing heat from the rolls, but the
upper bound is very small. However, the key to convergence
is still to match the enthalpy. That is,

Theorem 4.2: Let u and usat be defined as in (7) and (27)
respectively. Suppose the saturation bounds uL(t) and uU (t)
satisfy∫ ∞

0

(uL − ū) dt ≤ H̃(0) ≤
∫ ∞

0

(uU − ū) dt (28)

and T and s satisfy system (1)-(4) with boundary condition
Tx (0, t) = usat. Then, if k is sufficiently large, T converges
uniformly to T̄ and s converges to s̄.

Proof: The proof follows the same ideas as Theorem
4.1, and is omitted due to space limitations.

The condition (28) is more difficult to verify than condi-
tion (24). Moreover, even if the condition is satisfied, a con-
cern will be whether the rate of convergence is sufficiently
fast to allow the quality and safety goals to be met. This is

the subject of ongoing work. Another important weakness
of these results is the reliance on full-state, rather than more
realistic boundary temperature sensing. While numerically–
supported output feedback laws were presented in [20] and
[1], their convergence is yet to be proven and is still being
investigated.
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